永久免费AV无码入口_美美女高清毛片视频免费观看_制服丝袜另类专区制服_老司机成人午夜精品福利视频_伊人久久大线影院首页

您所在的位置:黃岡中學廣州學校 > 新聞資訊 > 能力培養(yǎng) > 動手能力 > 數(shù)學教學中學生動手操作能力的培養(yǎng)
數(shù)學教學中學生動手操作能力的培養(yǎng)

現(xiàn)在,學生動手能力的培養(yǎng)受到越來越多學者的關(guān)注,數(shù)學作為學生基礎(chǔ)教育的重要學科之一,通過學生動手實踐將實際問題抽象成數(shù)學模型,在實際生活中應用,有利于使學生獲得對數(shù)學理解,在思維能力,情感態(tài)度與價值觀等多方面得到全方位發(fā)展。動手操作在數(shù)學教學中,提供給學生充分的動手操作空間,真正地體現(xiàn)《新課標》所倡導的自主、合作、探究的學習方式,使學生獲得生動、活潑、主動而富有個性的發(fā)展。

一、動手操作在數(shù)學教學中的意義

數(shù)學教學中空間圖形向來是教師認為學生最難理解、最難掌握的知識,其主要原因在于學生的空間想象力比較貧乏、再加上學生理解能力的局限,造成這一知識接受起來很困難。幾何圖形的內(nèi)容教材在編排上由易到難、由平面圖形到立體圖形,學生經(jīng)過六年的小學數(shù)學學習,從認識圖形到計算圖形,學習的效果總不太令人滿意,特別是立體圖形,學生能根據(jù)想象出立體模型或畫出圖形不多。在教學過程中,能靈活掌握的學生最多在四分之一左右,大部分學生學得死,學得苦,不能舉一反三,成績不理想。新課標提出,數(shù)學課程的基本出發(fā)點是促進學生全面、持續(xù)、和諧地發(fā)展,不僅要考慮數(shù)學自身的特點,更應遵循學生學習數(shù)學的心理規(guī)律,強調(diào)從學生已有的生活經(jīng)驗出發(fā),讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行解釋與應用,進而使學生獲得對數(shù)學理解,在思維能力,情感態(tài)度與價值觀等多方面得到進步和發(fā)展。

二、動手操作在數(shù)學教學中的做法

1、設(shè)疑鼓勵,引導學生操作實踐,激活他們的學習興趣。

課堂教學中如何吸引學生學習的注意力,設(shè)疑加鼓勵是很好的手段之一。設(shè)疑是教師有意識地在教學之前,設(shè)置疑障,讓學生大膽猜測結(jié)果,它有利于在教學中激發(fā)學生的思維,有利于培養(yǎng)他們的獨立性,克服一切都要教師告知的依賴思想,并且在猜想中體驗創(chuàng)新的喜悅和自豪感,這讓學生興趣大增,對于學生猜測中出現(xiàn)的各種情況,不管正確與否,不要輕易下斷論,對于猜測中不時出現(xiàn)的創(chuàng)新意識,教師要明確鼓勵,使他增強自信心,學習的勁頭會更大。隨著一個個問題的解決,學生的數(shù)學生活經(jīng)驗日趨豐富,學生利用數(shù)學知識解決問題的能力也得以不斷提高,學習數(shù)學的主動性不斷增強,從而實現(xiàn)從要我學我要學的轉(zhuǎn)變。

2、抓住教學機會,引導學生隨時動手操作,解決問題。

有時,課堂教學時為了幫助學生理解較為抽象的幾何知識,動手操作是較為理想的可行辦法,學生在這一實踐活動中會獲得對數(shù)學知識的體會和理解,更重要的是良好的情感體驗。如:在教學平面圖形的對稱性時,理解對稱較為抽象,教師可以先向?qū)W生展示準備好的剪紙(對稱圖形:花邊、五角星……)讓學生發(fā)現(xiàn)這些剪紙的美麗和奇特,猜測老師怎么會剪出來的,躍躍欲試的學生可以自己嘗試著剪,允許他們率性而為,允許他們失敗,甚至允許他們犯錯誤,教師盡量多給他們動手操作的機會。學生通過動手實踐,合作交流,理解對稱的意義,并不斷嘗試著得出對稱花紋的正確剪法。通過觀察這些圖形的共同特征,理解折痕就是對稱軸,然后出示一組平面圖形:正方形、長方形、三角形(一般的和等腰的)、平行四邊形、圓等等,判斷它們的對稱性和對稱軸。學生可以討論,可以求助,也可以自己想辦法解決。通過了上面的動手操作之后,大部分學生還是喜歡自己動手,剪一剪、折一折,可以得到驗證,并及時反饋,讓學生動手操作,有效地促進了學生對數(shù)學問題的感受、領(lǐng)悟和欣賞,促進學生認識的整體性發(fā)展。

3、創(chuàng)設(shè)現(xiàn)實情境,提供給學生主動探究的空間。

新課標提出:有意義的數(shù)學學習應該是學生自我探索,體驗和經(jīng)歷數(shù)學活動的過程,而不是教師的給予,不是單純的模仿記憶,機械重復。教學中,教師要時刻注意并做到:學生能說的教師不說;學生自己能通過探究得到的,教師不要提示,學生能通過交流討論得到的教師就盡量少說。本著這一原則,在教學長方體、正方體特征時可以這樣設(shè)計情境:觀察現(xiàn)實生活中的物體形狀,出示一幢高樓模型,從不同的側(cè)面觀察,學生看到的形狀是各不相同的。讓學生聯(lián)系實說說自己家的左鄰右舍是什么樣的,然后把學生事先準備好的長方體紙盒讓學生觀察,然后拆開平鋪再觀察,在老師不作任何提示的情況下,讓學生自己主動去探究、去發(fā)現(xiàn)長方體的特征,并讓他們盡情表達自己的發(fā)現(xiàn),充分發(fā)表自己的意見。通過學生的動手、直觀演示,模型可能是一致的,但學生從不同的角度觀察,思維上卻是千變?nèi)f化的,得到的結(jié)論也就不是一成不變的了。這是提供學生發(fā)展思維的極好機會,即使失敗也是一種經(jīng)驗所得。

三、動手操作在數(shù)學教學中應堅持的一些原則

1、日常性原則

初中學生的思維仍具有較強的形象性,而他們的閱歷尚淺,生活區(qū)域較窄。因此,我們落實時盡可能從他們所熟悉的日常生活中選取生動形象的典型情境,在他們?nèi)粘=佑|的人與事中找尋學習的激發(fā)點,聯(lián)系生活實際,加深理解新知。如在農(nóng)村初中可以從農(nóng)家生活生產(chǎn)中尋找素材,產(chǎn)量的計算、土地的測量都是很好的素材。而在城鎮(zhèn)初中則可以選擇與生活、工作、家庭密切相關(guān)的事例。又如在教學三角形具有穩(wěn)定性時,我先讓學生用手拉木條釘成的四邊形和三角形,使他們親身感受、得到三角形具有穩(wěn)定性的特征,再舉例說說三角形、平行四邊形在日常生活中的運用,并出示相應的畫面,接著讓學生動手動腦解決怎樣使這個四邊形不變形等問題。

2、實踐性原則

學以致用是教育的本義。數(shù)學來源于生活,最終要回歸生活,為生活服務。在生活化原則過程中,不能僅僅是紙上談兵,空講理論,而是必須按照實踐性原則引導學生用所學的數(shù)學知識解決實際問題,通過加強與學生生活的聯(lián)系,溝通數(shù)學與生活的關(guān)系,使數(shù)學知識與方法在學生的生活和成長發(fā)展中大顯身手,使教學做合一的思想真正落到實處。

3、開放性原則

開放性原則要求數(shù)學教學走出封閉的模式,向絢麗多彩的大千世界開放我們的教學,鼓勵學生走出狹隘的個人小天地,在生活里學習數(shù)學知識,由實踐中鍛煉數(shù)學思維。同時,開放性原則也要求給學生更大更廣的活動和思考空間,允許學生從不同角度提出問題,不強求解決方法和途徑的唯一性,保持學生的思維呈開放和多維的活化狀態(tài)。

4、趣味性原則

興趣是最好的老師。針對初中學生好動、好奇、情緒化等心理特點,我們在創(chuàng)設(shè)生活化情境時要多選取一些生動活潑、情趣盎然的生活實例。如在教學游戲公平嗎時,模仿生活中的轉(zhuǎn)盤搖獎,采用不同的轉(zhuǎn)盤與規(guī)則,激發(fā)學生的好奇心理,引出課題。用這種富有生活情趣的數(shù)學素材能夠喚起學生學習的動機,激發(fā)學生學習的欲望。

5、動態(tài)化原則

有關(guān)研究表明,學習過程中多種感官的參與有助于信息的攝取。在生活化的數(shù)學教學中,要引導學生真正沉浸于學習氛圍中,就必須利用多媒體、實際操作、學習游戲等方式讓學生眼動、手動、口動、心動,在動態(tài)化的學習過程中了解生活、了解數(shù)學。如在教學直徑所對的圓周角是直角這個性質(zhì)時,可先讓學生用三角板或量角器比較或量出直徑所對的任何一個圓周角。通過學生動手、動腦、觀察與猜想,得出結(jié)論,然后進一步分析條件,深入研究、探索,最后證明該性質(zhì)的真實性。

所以說動手操作在數(shù)學教學中的作用舉足輕重,讓學生從動手操作中理解并獲得數(shù)學知識,既可以減輕教師負擔,也可以減輕學生的理解困難。實踐活動要同學生的所學知識緊密結(jié)合,需要學生人人參與,體驗數(shù)學知識,獲得數(shù)學活動經(jīng)驗,又了解數(shù)學在日常生活中的應用。在不斷的觀察、動手實踐、合作交流中,讓學生享受到動手制作直觀模型有助于自己對幾何知識理解、觀察有利于從不同角度全面認識物體、合作交流能取長補短等種種快樂,從中尋找解決問題的規(guī)律,學會舉一反三,靈活應用,正是動手操作的真正目的。使學生在空間與圖形的學習過程成為在教師引導下生動、活潑、主動、富有個性的發(fā)展過程,學生在自主探索、合作交流的氛圍中也能分享自己和他人的思考成果,達到共同提高的目的,使學生增強用數(shù)學思考的方法觀察現(xiàn)實世界的意識,發(fā)展初步的空間觀念,讓他們的空間想象思維能力有質(zhì)的飛躍。

上一條:沒有了       下一條:沒有了       返回上頁